Scaling
数据缩放的实质就是对数据进行无量纲化处理或弱化量纲,下面介绍几种常用的缩放方式。
Linear Scale
归一化(Normalization)通常指把数据缩放到$[0,1]$区间或$[-1,1]$区间,其转换公式分别为:
\[\begin{aligned} x&=\frac{x-x_{min}}{x_{max}-x_{min}} \\ x&=\frac{x-\frac{1}{2}(x_{max}+x_{min})}{x_max-x_min} \\ \end{aligned}\]标准化(Standardization)的实质就是计算Z-分数(Z-score):
\[x=\frac{x-\mu}{\sigma}\]标准化后的数据服从标准正态分布。
分别对归一化与标准化的式子做一下变形:
\[\begin{aligned} x_{norm}&=\frac{x-x_{min}}{x_{max}-x_{min}} \\ &=\frac{1}{x_{max}-x_{min}}x-\frac{x_{min}}{x_{max}-x_{min}} \\ x_{z}&=\frac{x-\mu}{\sigma} \\ &=\frac{1}{\sigma}x-\frac{\mu}{\sigma} \\ \end{aligned}\]可以看出归一化与标准化实质上都相当于对数据的一个线性变换,只不过是线性变换的系数不同。由此可以探究两者之间的区别。
首先不难看出归一化的缩放系数只由数据中的两个值决定:$x_{min}$与$x_{max}$,这一特性就决定了归一化变换是不稳定的,它容易被异常值或离群值影响。并且归一化的输出范围固定为$[0,1]$或者$[-1,1]$。
而反观标准化,它的线性变换系数是由数据统计量$\mu$与$\sigma$决定的,不难看出当$\sigma>1$时标准化会缩小数据的分布,而当$sigma<1$的时候会放大数据的分布,总而言之标准化就会使得变换后的数据呈一个固定的分布状态。标准化并没有对变换后的数据范围作规定,它只保证数据整体的分布。
Non-Linear Scale
当数据的取值跨度非常大时,考虑使用对数变换来缩小数据在量级上的差距。常用的对数变换有:
\[\begin{aligned} x=\log_{2}(x+1) \\ x=\log_{10}(x+1) \\ \end{aligned}\]除了对数变换外,还可以使用开方变换:
\[x=\sqrt[p]{x}\]Transformation
待补充